Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1155438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125172

RESUMO

Examining how host cells affect metabolic behaviors of probiotics is pivotal to better understand the mechanisms underlying the probiotic efficacy in vivo. However, studies to elucidate the interaction between probiotics and host cells, such as intestinal epithelial cells, remain limited. Therefore, in this study, we performed a comprehensive metabolome analysis of a co-culture containing Bifidobacterium breve MCC1274 and induced pluripotent stem cells (iPS)-derived small intestinal-like cells. In the co-culture, we observed a significant increase in several amino acid metabolites, including indole-3-lactic acid (ILA) and phenyllactic acid (PLA). In accordance with the metabolic shift, the expression of genes involved in ILA synthesis, such as transaminase and tryptophan synthesis-related genes, was also elevated in B. breve MCC1274 cells. ILA production was enhanced in the presence of purines, which were possibly produced by intestinal epithelial cells (IECs). These findings suggest a synergistic action of probiotics and IECs, which may represent a molecular basis of host-probiotic interaction in vivo.

2.
Sci Immunol ; 7(72): eabl7209, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35749514

RESUMO

Long-term senescent cells exhibit a secretome termed the senescence-associated secretory phenotype (SASP). Although the mechanisms of SASP factor induction have been intensively studied, the release mechanism and how SASP factors influence tumorigenesis in the biological context remain unclear. In this study, using a mouse model of obesity-induced hepatocellular carcinoma (HCC), we identified the release mechanism of SASP factors, which include interleukin-1ß (IL-1ß)- and IL-1ß-dependent IL-33, from senescent hepatic stellate cells (HSCs) via gasdermin D (GSDMD) amino-terminal-mediated pore. We found that IL-33 was highly induced in senescent HSCs in an IL-1ß-dependent manner in the tumor microenvironment. The release of both IL-33 and IL-1ß was triggered by lipoteichoic acid (LTA), a cell wall component of gut microbiota that was transferred and accumulated in the liver tissue of high-fat diet-fed mice, and the release of these factors was mediated through cell membrane pores formed by the GSDMD amino terminus, which was cleaved by LTA-induced caspase-11. We demonstrated that IL-33 release from HSCs promoted HCC development via the activation of ST2-positive Treg cells in the liver tumor microenvironment. The accumulation of GSDMD amino terminus was also detected in HSCs from human NASH-associated HCC patients, suggesting that similar mechanism could be involved in a certain type of human HCC. These results uncover a release mechanism for SASP factors from sensitized senescent HSCs in the tumor microenvironment, thereby facilitating obesity-associated HCC progression. Furthermore, our findings highlight the therapeutic potential of inhibitors of GSDMD-mediated pore formation for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Senescência Celular , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Interleucina-33/metabolismo , Camundongos , Obesidade/complicações , Obesidade/metabolismo , Microambiente Tumoral
3.
Nat Commun ; 12(1): 5674, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584098

RESUMO

Emerging evidence is revealing that alterations in gut microbiota are associated with colorectal cancer (CRC). However, very little is currently known about whether and how gut microbiota alterations are causally associated with CRC development. Here we show that 12 faecal bacterial taxa are enriched in CRC patients in two independent cohort studies. Among them, 2 Porphyromonas species are capable of inducing cellular senescence, an oncogenic stress response, through the secretion of the bacterial metabolite, butyrate. Notably, the invasion of these bacteria is observed in the CRC tissues, coinciding with the elevation of butyrate levels and signs of senescence-associated inflammatory phenotypes. Moreover, although the administration of these bacteria into ApcΔ14/+ mice accelerate the onset of colorectal tumours, this is not the case when bacterial butyrate-synthesis genes are disrupted. These results suggest a causal relationship between Porphyromonas species overgrowth and colorectal tumourigenesis which may be due to butyrate-induced senescence.


Assuntos
Bactérias/metabolismo , Butiratos/metabolismo , Carcinogênese/patologia , Neoplasias Colorretais/patologia , Microbioma Gastrointestinal , Bactérias/classificação , Bactérias/genética , Senescência Celular/fisiologia , Neoplasias Colorretais/microbiologia , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Fezes/microbiologia , Humanos , Intestinos/citologia , Intestinos/microbiologia , Intestinos/fisiologia , Porphyromonas/genética , Porphyromonas/metabolismo , RNA Ribossômico 16S/genética
4.
Gut Microbes ; 13(1): 1-11, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33430687

RESUMO

We previously investigated the gut microbiota of 453 healthy Japanese subjects aged 0 to 104 years and found that the composition of the gut microbiota could be classified into some age-related clusters. In this study, we compared fecal metabolites between age-matched and age-mismatched elderly subjects to examine the roles of the gut microbiota in the health of the elderly. Fecal metabolites in 16 elderly subjects who fell into an age-matched cluster (elderly-type gut microbiota group, E-GM) and another 16 elderly subjects who fell into an age-mismatched cluster (adult-type gut microbiota group, A-GM) were measured by CE-TOF-MS. A total of eight metabolites were significantly different between the groups: cholic acid and taurocholic acid were enriched in the A-GM group, whereas choline, trimethylamine (TMA), N8-acetylspermidine, propionic acid, 2-hydroxy-4-methylvaleric acid, and 5-methylcytosine were enriched in the E-GM group. Some metabolites (choline, TMA, N8-acetylspermidine) elevated in the E-GM group were metabolites or precursors reported as risk factors for age-associated diseases such as arteriosclerosis and colorectal cancer. The abundance of some species belongs to Proteobacteria, which were known as TMA-producing bacteria, was increased in the E-GM group and correlated with fecal TMA levels. In vitro assays showed that these elderly-type fecal metabolites suppressed the expression of genes related to tight junctions in normal colonic epithelial cells and induced the expression of inflammatory cytokines in colon cancer cells. These findings suggest that metabolites produced by the aged gut microbiota could contribute to intestinal and systemic homeostasis and could be targeted for preventing aging-associated diseases.


Assuntos
Microbioma Gastrointestinal/fisiologia , Metaboloma/fisiologia , Idoso , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Colina/análise , Colina/metabolismo , Colina/farmacologia , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fezes/química , Fezes/microbiologia , Humanos , Metilaminas/análise , Metilaminas/metabolismo , Metilaminas/farmacologia , Fatores de Risco , Espermidina/análogos & derivados , Espermidina/análise , Espermidina/metabolismo , Espermidina/farmacologia , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/genética
5.
Nutrients ; 12(1)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952193

RESUMO

A previous clinical study on pre-obesity subjects revealed that Bifidobacterium breve B-3 shows anti-obesity effects and possibly increases muscle mass. Here, we investigated the effects of B-3 on muscle function, such as muscle strength and metabolism, and some signaling pathways in skeletal muscle. Male rodents were orally administered live B-3 (B-3L) or heat-killed B-3 (B-3HK) for 4 weeks. We found that administration of B-3 to rats tended to increase muscle mass and affect muscle metabolism, with stronger effects in the B-3HK group than in the B-3L group. B-3HK significantly increased muscle mass and activated Akt in the rat soleus. With regard to muscle metabolism, B-3HK significantly increased phosphorylated AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and cytochrome c oxidase (CCO) gene expression in the rat soleus, suggesting an effect on the AMPK-PGC1α-mitochondrial biogenesis pathway. Furthermore, B-3HK promoted oxidative muscle fiber composition in the gastrocnemius. We also observed a significantly higher level of murine grip strength in the B-3HK group than in the control group. These findings suggest the potential of heat-killed B-3 in promoting muscle hypertrophy and modifying metabolic functions, possibly through the Akt and AMPK pathways, respectively.


Assuntos
Bifidobacterium breve , Mitocôndrias Musculares/fisiologia , Músculo Esquelético/fisiologia , Probióticos/administração & dosagem , Animais , Temperatura Alta , Masculino , Camundongos , Ratos
6.
Nat Commun ; 9(1): 4109, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30294002

RESUMO

This Article contains errors in Fig. 4. In panel d, the lanes of the western blot should have been labeled '1.05','1.06, '1.09', '1.11' '1.13', '1.16', '1.19', '1.22', '1.24', '1.25'. The correct version of Figure 4 appears in the associated Publisher Correction.

7.
Nat Commun ; 8: 15287, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28508895

RESUMO

Emerging evidence is revealing that exosomes contribute to many aspects of physiology and disease through intercellular communication. However, the biological roles of exosome secretion in exosome-secreting cells have remained largely unexplored. Here we show that exosome secretion plays a crucial role in maintaining cellular homeostasis in exosome-secreting cells. The inhibition of exosome secretion results in the accumulation of nuclear DNA in the cytoplasm, thereby causing the activation of cytoplasmic DNA sensing machinery. This event provokes the innate immune response, leading to reactive oxygen species (ROS)-dependent DNA damage response and thus induce senescence-like cell-cycle arrest or apoptosis in normal human cells. These results, in conjunction with observations that exosomes contain various lengths of chromosomal DNA fragments, indicate that exosome secretion maintains cellular homeostasis by removing harmful cytoplasmic DNA from cells. Together, these findings enhance our understanding of exosome biology, and provide valuable new insights into the control of cellular homeostasis.


Assuntos
Citoplasma/metabolismo , DNA/metabolismo , Exossomos/metabolismo , Homeostase , Animais , Apoptose , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Citoplasma/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo
8.
Cancer Discov ; 7(5): 522-538, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28202625

RESUMO

Obesity increases the risk of cancers, including hepatocellular carcinomas (HCC). However, the precise molecular mechanisms through which obesity promotes HCC development are still unclear. Recent studies have shown that gut microbiota may influence liver diseases by transferring its metabolites and components. Here, we show that the hepatic translocation of obesity-induced lipoteichoic acid (LTA), a Gram-positive gut microbial component, promotes HCC development by creating a tumor-promoting microenvironment. LTA enhances the senescence-associated secretory phenotype (SASP) of hepatic stellate cells (HSC) collaboratively with an obesity-induced gut microbial metabolite, deoxycholic acid, to upregulate the expression of SASP factors and COX2 through Toll-like receptor 2. Interestingly, COX2-mediated prostaglandin E2 (PGE2) production suppresses the antitumor immunity through a PTGER4 receptor, thereby contributing to HCC progression. Moreover, COX2 overexpression and excess PGE2 production were detected in HSCs in human HCCs with noncirrhotic, nonalcoholic steatohepatitis (NASH), indicating that a similar mechanism could function in humans.Significance: We showed the importance of the gut-liver axis in obesity-associated HCC. The gut microbiota-driven COX2 pathway produced the lipid mediator PGE2 in senescent HSCs in the tumor microenvironment, which plays a pivotal role in suppressing antitumor immunity, suggesting that PGE2 and its receptor may be novel therapeutic targets for noncirrhotic NASH-associated HCC. Cancer Discov; 7(5); 522-38. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 443.


Assuntos
Carcinoma Hepatocelular/metabolismo , Dinoprostona/metabolismo , Microbioma Gastrointestinal/fisiologia , Neoplasias Hepáticas/metabolismo , Obesidade/complicações , Animais , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/microbiologia , Feminino , Humanos , Lipopolissacarídeos/metabolismo , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Obesidade/microbiologia , Ácidos Teicoicos/metabolismo , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia
9.
Cancer Res ; 74(7): 1885-9, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24638983

RESUMO

Multiple epidemiological studies have revealed that excess bodyweight, such as in people who are overweight or obese (defined by a body mass index higher than 25 kg/m(2)), is a major risk factor for not only diabetes and cardiovascular diseases but also cancer. Effective strategies for obesity prevention are therefore needed for cancer prevention. However, because the prevalence of excess bodyweight in most developed countries has been increasing markedly over the past several decades, with no signs of abating, alternative approaches are also required to conquer obesity-associated cancer. Therefore, we sought to understand the molecular mechanisms underlying obesity-associated cancer. Although several phenomena have been proposed to explain how obesity increases cancer risk, the exact molecular mechanisms that integrate these phenomena have remained largely obscure. Recently, we have traced the association between obesity and increased cancer risk to gut microbiota communities that produce a DNA-damaging bile acid. The analyses also revealed the role of cellular senescence in cancer, which we have been studying for the past few decades. In this review, we provide an overview of our work and discuss the next steps, focusing on the potential clinical implications of these findings.


Assuntos
Intestinos/microbiologia , Neoplasias/etiologia , Obesidade/complicações , Animais , Senescência Celular , Dano ao DNA , Ácido Desoxicólico/fisiologia , Humanos , Camundongos
10.
Nature ; 499(7456): 97-101, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23803760

RESUMO

Obesity has become more prevalent in most developed countries over the past few decades, and is increasingly recognized as a major risk factor for several common types of cancer. As the worldwide obesity epidemic has shown no signs of abating, better understanding of the mechanisms underlying obesity-associated cancer is urgently needed. Although several events were proposed to be involved in obesity-associated cancer, the exact molecular mechanisms that integrate these events have remained largely unclear. Here we show that senescence-associated secretory phenotype (SASP) has crucial roles in promoting obesity-associated hepatocellular carcinoma (HCC) development in mice. Dietary or genetic obesity induces alterations of gut microbiota, thereby increasing the levels of deoxycholic acid (DCA), a gut bacterial metabolite known to cause DNA damage. The enterohepatic circulation of DCA provokes SASP phenotype in hepatic stellate cells (HSCs), which in turn secretes various inflammatory and tumour-promoting factors in the liver, thus facilitating HCC development in mice after exposure to chemical carcinogen. Notably, blocking DCA production or reducing gut bacteria efficiently prevents HCC development in obese mice. Similar results were also observed in mice lacking an SASP inducer or depleted of senescent HSCs, indicating that the DCA-SASP axis in HSCs has key roles in obesity-associated HCC development. Moreover, signs of SASP were also observed in the HSCs in the area of HCC arising in patients with non-alcoholic steatohepatitis, indicating that a similar pathway may contribute to at least certain aspects of obesity-associated HCC development in humans as well. These findings provide valuable new insights into the development of obesity-associated cancer and open up new possibilities for its control.


Assuntos
Senescência Celular , Ácido Desoxicólico/metabolismo , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Células Estreladas do Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Obesidade/metabolismo , Animais , Antibacterianos/farmacologia , Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/prevenção & controle , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Citocinas/metabolismo , Dano ao DNA/efeitos dos fármacos , Ácido Desoxicólico/sangue , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Fígado Gorduroso/complicações , Fígado Gorduroso/patologia , Trato Gastrointestinal/efeitos dos fármacos , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Interleucina-1beta/deficiência , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Obesidade/induzido quimicamente , Fenótipo , Fatores de Risco
11.
Mol Cell ; 45(1): 123-31, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22178396

RESUMO

Both the DNA damage response (DDR) and epigenetic mechanisms play key roles in the implementation of senescent phenotypes, but very little is known about how these two mechanisms are integrated to establish senescence-associated gene expression. Here we show that, in senescent cells, the DDR induces proteasomal degradation of G9a and GLP, major histone H3K9 mono- and dimethyltransferases, through Cdc14B- and p21(Waf1/Cip1)-dependent activation of APC/C(Cdh1) ubiquitin ligase, thereby causing a global decrease in H3K9 dimethylation, an epigenetic mark for euchromatic gene silencing. Interestingly, induction of IL-6 and IL-8, major players of the senescence-associated secretory phenotype (SASP), correlated with a decline of H3K9 dimethylation around the respective gene promoters and knockdown of Cdh1 abolished IL-6/IL-8 expression in senescent cells, suggesting that the APC/C(Cdh1)-G9a/GLP axis plays crucial roles in aspects of senescent phenotype. These findings establish a role for APC/C(Cdh1) and reveal how the DDR integrates with epigenetic processes to induce senescence-associated gene expression.


Assuntos
Senescência Celular , Dano ao DNA , Histona-Lisina N-Metiltransferase/metabolismo , Complexos Ubiquitina-Proteína Ligase/fisiologia , Ciclossomo-Complexo Promotor de Anáfase , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/fisiologia , Antígenos de Histocompatibilidade/metabolismo , Histona Metiltransferases , Histonas/metabolismo , Humanos , Metilação , Transdução de Sinais
12.
Chromosome Res ; 20(1): 139-51, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22167552

RESUMO

Y-linked Dmy (also called dmrt1bY) in the teleost fish medaka, W-linked Dm-W in the African clawed frog (Xenopus laevis), and Z-linked Dmrt1 in the chicken are all sex chromosome-linked Dmrt1 homologues required for sex determination. Dmy and Dm-W both are Dmrt1 palalogues evolved through Dmrt1 duplication, while chicken Dmrt1 is a Z-linked orthologue. The eutherian sex-determining gene, Sry, evolved from an allelic gene, Sox3. Here we analyzed the exon-intron structures of the Dmrt1 homologues of several vertebrate species through information from databases and by determining the transcription initiation sites in medaka, chicken, Xenopus, and mouse. Interestingly, medaka Dmrt1 and Dmy and Xenopus Dm-W and Dmrt1 have a noncoding-type first exon, while mouse and chicken Dmrt1 do not. We next compared the 5'-flanking sequences of the Dmrt1 noncoding and coding exons 1 of several vertebrate species and found conservation of the presumptive binding sites for some transcription factors. Importantly, based on the phylogenetic trees for Dmrt1 and Sox3 homologues, it was implied that the sex-determining gene Dmy, Dm-W, and Sry have a higher substitution rate than thier prototype genes. Finally, we discuss the evolutionary relationships between vertebrate sex chromosomes and the sex-determining genes Dmy/Dm-W and Sry, which evolved by neofunctionalization of Dmrt1 and Sox3, respectively, for sex determining function. We propose a coevolution model of sex determining gene and sex chromosome, in which undifferentiated sex chromosomes easily allow replacement of a sex-determining gene with another new one, while specialized sex chromosomes are restricted a particular sex-determining gene.


Assuntos
Evolução Molecular , Cromossomos Sexuais/genética , Processos de Determinação Sexual , Fatores de Transcrição/genética , Vertebrados/genética , Animais , Sequência de Bases , Sítios de Ligação , Instabilidade Cromossômica , Sequência Conservada , Bases de Dados Genéticas , Éxons , Feminino , Domínios HMG-Box , Íntrons , Masculino , Modelos Genéticos , Filogenia , Regiões Promotoras Genéticas , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Cromossomos Sexuais/metabolismo , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição
13.
FEBS J ; 278(7): 1020-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21281450

RESUMO

Genetic sex-determining systems in vertebrates include two basic types of heterogamety, which are represented by the XX/XY and ZZ/ZW types. Both types occur among amphibian species. Little is known, however, about the molecular mechanisms underlying amphibian sex determination. Recently, a W-linked gene, DM-W, was isolated as a paralog of DMRT1 in the African clawed frog Xenopus laevis, which has a female heterogametic ZZ/ZW-type sex-determining system. The DNA-binding domain of DM-W shows high sequence identity with that of DMRT1, but DM-W does not contain a domain with homology to DMRT1's transactivation domain. Importantly, phenotypic analysis of transgenic individuals bearing a DM-W-expression or -knockdown vector strongly suggested that DM-W acts as a female sex-determining gene in this species. In this minireview, we briefly describe the sex-determining systems in amphibians, discuss recent findings from the discovery of the DM-W gene in terms of its molecular evolution and its function in sex determination and ovary formation, and introduce a new model for the ZZ/ZW-type sex determination elicited by DM-W and DMRT1 in X. laevis. Finally, we discuss sex-determining systems and germ-cell development during vertebrate evolution, especially in view of a conserved role of DMRT1 in gonadal masculinization.


Assuntos
Cromossomos Sexuais/genética , Processos de Determinação Sexual , Xenopus laevis/fisiologia , Animais , Feminino , Células Germinativas , Gônadas/embriologia , Gônadas/crescimento & desenvolvimento , Masculino , Diferenciação Sexual , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
14.
Cancer Res ; 70(22): 9381-90, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21062974

RESUMO

Although the p16(INK4a) and p21Waf1/Cip1 cyclin-dependent kinase (CDK) inhibitors are known to play key roles in cellular senescence in vitro, their roles in senescence remain rather poorly understood in vivo. This situation is partly due to the possibility of compensatory effect(s) between p16INK4a and p21Waf1/Cip1 or to the upregulation of functionally related CDK inhibitors. To directly address the cooperative roles of p16INK4a and p21Waf1/Cip1 in senescence in vivo, we generated a mouse line simply lacking both p16INK4a and p21Waf1/Cip1 genes [double-knockout (DKO)]. Mouse embryonic fibroblasts (MEF) derived from DKO mice displayed no evidence of cellular senescence when cultured serially in vitro. Moreover, DKO MEFs readily escaped Ras-induced senescence and overrode contact inhibition in culture. This was not the case in MEFs lacking either p16INK4a or p21Waf1/Cip1, indicating that p16(INK4a) and p21Waf1/Cip1 play cooperative roles in cellular senescence and contact inhibition in vitro. Notably, we found the DKO mice to be extremely susceptible to 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate-induced skin carcinogenesis that involves oncogenic mutation of the H-ras gene. Mechanistic investigations suggested that the high incidence of cancer in DKO mice likely reflected a cooperative effect of increased benign skin tumor formation caused by p21Waf1/Cip1 loss, with increased malignant conversion of benign skin tumors caused by p16(INK4a) loss. Our findings establish an intrinsic cooperation between p16INK4a and p21Waf1/Cip1 in the onset of cellular senescence and tumor suppression in vivo.


Assuntos
Senescência Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Neoplasias Cutâneas/metabolismo , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Western Blotting , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Histonas/genética , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Acetato de Tetradecanoilforbol/toxicidade , Proteínas ras/genética , Proteínas ras/metabolismo
15.
Development ; 137(15): 2519-26, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20573695

RESUMO

A Y-linked gene, DMY/dmrt1bY, in teleost fish medka and a Z-linked gene, DMRT1, in chicken are both required for male sex determination. We recently isolated a W-linked gene, DM-W, as a paralogue of DMRT1 in Xenopus laevis, which has a ZZ/ZW-type sex-determining system. The DNA-binding domain of DM-W shows high sequence identity with that of DMRT1, but DM-W has no significant sequence similarity with the transactivation domain of DMRT1. Here, we first show colocalization of DM-W and DMRT1 in the somatic cells surrounding primordial germ cells in ZW gonad during sex determination. We next examined characteristics of DM-W and DMRT1 as a transcription factor in vitro. DM-W and DMRT1 shared a DNA-binding sequence. Importantly, DM-W dose-dependently antagonized the transcriptional activity of DMRT1 on a DMRT1-driven luciferase reporter system in 293 cells. We also examined roles of DM-W or DMRT1 in gonadal formation. Some transgenic ZW tadpoles bearing a DM-W knockdown vector had gonads with a testicular structure, and two developed into frogs with testicular gonads. Ectopic DMRT1 induced primary testicular development in some ZW individuals. These observations indicated that DM-W and DMRT1 could have opposite functions in the sex determination. Our findings support a novel model for a ZZ/ZW-type system in which DM-W directs female sex as a sex-determining gene, by antagonizing DMRT1. Additionally, they suggest that DM-W diverged from DMRT1 as a dominant-negative type gene, i.e. as a ;neofunctionalization' gene for the ZZ/ZW-type system. Finally, we discuss a conserved role of DMRT1 in testis formation during vertebrate evolution.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Cromossomos Sexuais , Processos de Determinação Sexual , Fatores de Transcrição/fisiologia , Proteínas de Xenopus/fisiologia , Animais , Animais Geneticamente Modificados , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Feminino , Genes Dominantes , Humanos , Hibridização In Situ , Masculino , Ovário/metabolismo , Plasmídeos/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteínas de Xenopus/metabolismo
16.
Blood ; 115(4): 850-9, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19965624

RESUMO

The transition of red blood cells (RBCs) from primitive to definitive erythropoiesis is conserved across vertebrates. In anuran amphibians, the larval RBCs from primitive erythropoiesis are replaced by adult RBCs from definitive erythropoiesis during metamorphosis. The molecular mechanisms by which the primitive (larval) blood cells are specifically removed from circulation are not yet understood. In this study, we identified Xenopus tumor necrosis factor-related apoptosis-inducing ligand 1 (xTRAIL1) and xTRAIL2 as ligands of Xenopus death receptor-Ms (xDR-Ms) and investigated whether TRAIL signaling could be involved in this transition. The Trail and xDR-M genes were highly expressed in the liver and RBCs, respectively, during metamorphosis. Interestingly, xTRAIL1 enhanced the transition of the RBCs, and a dominant-negative form of the xTRAIL1 receptor attenuated it, when injected into tadpoles. Moreover, xTRAIL1 induced apoptosis in larval RBCs, but had little effect on adult RBCs in vitro. We also found that adult RBCs treated with staurosporine, a protein kinase C (PKC) inhibitor, were sensitized to xTRAIL1. The mRNAs for PKC isoforms were up-regulated in RBCs during metamorphosis. These results suggest that xTRAIL1 can cause apoptosis, probably mediated through xDR-Ms, in larval RBCs, but may not kill adult RBCs, presumably owing to PKC activation, as part of the mechanism for RBC switching.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Eritrócitos/citologia , Metamorfose Biológica/fisiologia , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose , Caspase 3/metabolismo , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Eritrócitos/fisiologia , Rim/citologia , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/química , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF , Transfecção , Proteínas de Xenopus/química , Xenopus laevis/crescimento & desenvolvimento
17.
Chromosome Res ; 16(7): 999-1011, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18850318

RESUMO

Amphibians employ genetic sex determination systems with male and female heterogamety. The ancestral state of sex determination in amphibians has been suggested to be female heterogamety; however, the origins of the sex chromosomes and the sex-determining genes are still unknown. In Xenopus laevis, chromosome 3 with a candidate for the sex- (ovary-) determining gene (DM-W) was recently identified as the W sex chromosome. This study conducted comparative genomic hybridization for X. laevis and Xenopus tropicalis and FISH mapping of eight sexual differentiation genes for X. laevis, X. tropicalis, and Rana rugosa. Three sex-linked genes of R. rugosa--AR, SF-1/Ad4BP, and Sox3--are all localized to chromosome 10 of X. tropicalis, whereas AR and SF-1/Ad4BP are mapped to chromosome 14 and Sox3 to chromosome 11 in X. laevis. These results suggest that the W sex chromosome was independently acquired in the lineage of X. laevis, and the origins of the ZW sex chromosomes are different between X. laevis and R. rugosa. Cyp17, Cyp19, Dmrt1, Sox9, and WT1 were localized to autosomes in X. laevis and R. rugosa, suggesting that these five genes probably are not candidates for the sex-determining genes in the two anuran species.


Assuntos
Mapeamento Cromossômico/métodos , Pipidae/genética , Ranidae/genética , Cromossomos Sexuais/genética , Processos de Determinação Sexual , Animais , Bandeamento Cromossômico , Hibridização Genômica Comparativa , Feminino , Hibridização in Situ Fluorescente , Masculino , Pipidae/classificação , Ranidae/classificação , Fator Esteroidogênico 1/genética , Fatores de Transcrição/genética , Xenopus/classificação , Xenopus/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética
18.
Proc Natl Acad Sci U S A ; 105(7): 2469-74, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18268317

RESUMO

In the XX/XY sex-determining system, the Y-linked SRY genes of most mammals and the DMY/Dmrt1bY genes of the teleost fish medaka have been characterized as sex-determining genes that trigger formation of the testis. However, the molecular mechanism of the ZZ/ZW-type system in vertebrates, including the clawed frog Xenopus laevis, is unknown. Here, we isolated an X. laevis female genome-specific DM-domain gene, DM-W, and obtained molecular evidence of a W-chromosome in this species. The DNA-binding domain of DM-W showed a strikingly high identity (89%) with that of DMRT1, but it had no significant sequence similarity with the transactivation domain of DMRT1. In nonmammalian vertebrates, DMRT1 expression is connected to testis formation. We found DMRT1 or DM-W to be expressed exclusively in the primordial gonads of both ZZ and ZW or ZW tadpoles, respectively. Although DMRT1 showed continued expression after sex determination, DM-W was expressed transiently during sex determination. Interestingly, DM-W mRNA was more abundant than DMRT1 mRNA in the primordial gonads of ZW tadpoles early in sex determination. To assess the role of DM-W, we produced transgenic tadpoles carrying a DM-W expression vector driven by approximately 3 kb of the 5'-flanking sequence of DM-W or by the cytomegalovirus promoter. Importantly, some developing gonads of ZZ transgenic tadpoles showed ovarian cavities and primary oocytes with both drivers, suggesting that DM-W is crucial for primary ovary formation. Taken together, these results suggest that DM-W is a likely sex (ovary)-determining gene in X. laevis.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Cromossomos Sexuais/genética , Fatores de Transcrição/genética , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Genótipo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Dados de Sequência Molecular , Ovário , Regiões Promotoras Genéticas , Processos de Determinação Sexual , Fatores de Transcrição/metabolismo , Xenopus laevis/metabolismo
19.
Dev Growth Differ ; 48(9): 597-603, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17118014

RESUMO

The doublesex and mab-3-related transcription factor 1 (DMRT1) is involved in testis formation in a variety of vertebrates. In the teleost fish, Medaka, DMY/DMRT1Y on the Y chromosome, a duplicate of the autosomal DMRT1 gene, is characterized as a sex-determining gene. We report here the characterization of the Xenopus DMRT1 genes. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that X. laevis DMRT1 was expressed throughout the embryo during early development and was restricted to the primordial gonads after embryogenesis. Whole-mount in situ hybridization analysis of the gene confirmed its specific expression in the primordial gonads. To study the transcriptional control of DMRT1 gene expression, we isolated the predicted promoter region of X. tropicalis DMRT1 using databases for this species. Analysis of transgenic tadpoles with a green fluorescence protein (GFP) reporter showed that approximately 3 kb of the 5'-flanking sequence of the DMRT1 gene was implicated in DMRT1 expression in the primordial gonads. We also showed that the C-terminal region of DMRT1 functioned as a transactivation domain in cultured cells, by a luciferase reporter assay using fusion proteins with the DNA-binding domain of GAL4. These findings suggest that DMRT1 functions as an activator of one or more genes involved in sex determination or gonadal differentiation.


Assuntos
Proteínas de Ligação a DNA/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Ativação Transcricional , Xenopus/genética , Animais , Masculino , Processos de Determinação Sexual , Testículo/fisiologia , Cromossomo Y
20.
J Steroid Biochem Mol Biol ; 99(2-3): 85-92, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16621513

RESUMO

In rainbow trout, there are at least two CYP19 genes (CYP19a and CYP19b). They encode distinct P450arom isozymes that are differentially expressed in the ovary and brain. To understand the transcriptional regulation of the rainbow trout CYP19a (rtCYP19a) gene in the ovary, we isolated its 5'-flanking region. The presence of potential FTZ-F1-binding sites prompted us to isolate the cDNA encoding a rainbow trout FTZ-F1 homologue (rtFTZ-F1) and analyze its effect on the rtCYP19a gene transcriptional activity. RT-PCR analysis showed overlapping expression of the rtCYP19a and rtFTZ-F1 genes in the ovary. Transient transfection studies in Chinese hamster ovary-derived CHO-K1 cells revealed that the region from -247 to -105, which contains three potential FTZ-F1-binding sites, was required for rtFTZ-F1-mediated transcriptional activation of the rtCYP19a gene. Among the three potential binding sites, the two from -150 to -142 and from -118 to -110 showed strong affinities for rtFTZ-F1 in gel shift assays, and base substitutions in either site almost abolished the transcriptional activation by rtFTZ-F1. Taken together, these results demonstrate that rtFTZ-F1 plays an important role in the transcriptional regulation of the rtCYP19a gene in the ovary.


Assuntos
Aromatase/genética , Regulação da Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Oncorhynchus mykiss/genética , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Cricetinae , Cricetulus , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Luciferases/genética , Luciferases/metabolismo , Masculino , Dados de Sequência Molecular , Mutação/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Fator Esteroidogênico 1 , Fatores de Transcrição/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...